IOWA STATE UNIVERSITY **Department of Agronomy**

Investigating Dynamic Heat Stress Responses with Diverse Maize Inbreds through Transcriptome Analyses

¹ Department of Agronomy, Iowa State University, Ames, Iowa; ² USDA-ARS, Plant Stress & Germplasm Development Unit, Lubbock, Texas; ³USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ¹ Department of Agronomy, Iowa State University, Ames, Iowa; ² USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ¹ Department of Agronomy, Iowa State University, Ames, Iowa; ² USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ¹ Department of Agronomy, Iowa State University, Ames, Iowa; ² USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ¹ Department Onit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ¹ Department Onit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa; ³ USDA-ARS, Corn Insects Ames, Iowa; ⁴ USDA-ARS, Corn Insects Ames, Iowa; ⁴ USDA-ARS, Corn Insects Ames, Iowa; ⁴ USDA-ARS, Iowa; ⁴Department of Statistics, Iowa State University, Ames, Iowa; ⁵Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa; ⁶USDA-ARS, Wheat Health, Genetics & Quality Research, Pullman, Washington

Background

- A better understanding of maize heat stress response mechanisms will facilitate the breeding of heat tolerant varieties.
- Many studies were done focusing on a pair or few contrasting genotypes.

Objectives

- To quantify the natural variation in heat stress response across diverse maize inbred lines.
- To identify genetic loci contributing to heat stress related phenotypes.
- To identify underlying mechanisms via integrating analyses at the gene expression, biochemical, and whole-plant level.

> Temporal heat response patterns of two groups were uncovered via differential expression analysis.

Figure 2. Transcript abundance PCA from 421 samples. Genotypes were classified into T (tolerant) and S (sensitive) groups for downstream analyses.

Figure 3. Differentially expressed genes (DEGs) between adjacent time points from T and S groups.

yellow module stood out as a key tolerance-related module in the network analysis.

Summary

Dynamic heat stress response patterns at the transcription level were uncovered through both differential expression and co-expression network analyses. • Contrasting regulatory networks of the two groups suggested several HSFs as master regulators contributing to the heat tolerance.

• Integrating QTL mappings, lipidome and physiological data will further elucidate the heat stress response mechanisms in maize.

yellow module were shown here.

Acknowledgements

United States Department of Agriculture National Institute of Food and Agriculture AFRI Grant: 2016-67013-24602

jlwei@iastate.edu

