IOWA STATE UNIVERSITY **Department of Agronomy**

Workflow

Critical Environmental Regressor through Informed Search (CERIS)

Weather profiling

Environmental index

GWAS

Reaction-norm parameters

Genomic prediction

Genetic dissection Performance prediction

Summary

- GDD and DTR during the early growing stage were identified to shape FT and PH, respectively.
- Separate sets of genetic loci were detected for reaction-norm parameters of FT and PH. These loci included new genomic regions in addition to known maturity (Ma1) and dwarfing genes (Dw1 - Dw4).
- Cross and empirical validations showed promising results of predicting diverse germplasm in dynamic environments.

Raymond F. Baker

Center for Plant Breeding

United States Department of Agriculture National Institute of Food and Agriculture

Department of Agronomy, Iowa State University, Ames, IA; ²Center for Plant Science Innovation and Department of Plant and Environmental Sciences Clemson University, Clemson, SC; ⁴Department of Soil and Crop Sciences, Texas A&M University, College Station, TX; ⁵USDA-ARS, Plant Stress & Germplasm Development Unit, Lubbock, TX; ⁶Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE; ⁷Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI; ⁸Advanced Plant Technology Program, Clemson, SC; ⁹USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA

Genetic Dissection of Phenotypic Plasticity in Flowering Time and Plant Height in Sorghum under Natural Field Conditions

Jialu Wei¹; Tingting Guo¹; Qi Mu¹; Mahule-Elyse-Bo Alladassi¹; Ravi V. Mural²; Richard E. Boyles³; Leo Hoffmann Jr.⁴; Chad M. Hayes⁵; Brandi Sigmon⁶; Addie M. Thompson⁷; Maria G. Salas-Fernandez¹; William L. Rooney⁴; Stephen Kresovich⁸; James C. Schnable²; Xianran Li⁹; Jianming Yu¹

- Phenotypic plasticity is the property of a given genotype to produce different phenotypes in response to distinct environmental conditions.
- Phenotypic variation of living organisms is determined by genetics, environment, and their interaction.
- Understanding the mechanisms of phenotypic plasticity can facilitate breeding for either a broad range of environments or a target area.
- In this study, phenotypic plasticity of flowering time and plant height was investigated in Sorghum Association Panel (SAP) with biologyinformed environmental indices.

> Flowering time and plant height variations observed under natural field conditions

Figure 1. Reaction norms for flowering time and plant height. Colored dots represent the average performance of evaluated genotypes at each environment, *i.e.*, environmental mean. Environments are ordered by ascending environmental mean.

> Genetic dissection of phenotypic plasticity through **Genome-Wide Association Studies**

Figure 3. GWAS results of intercept and slope derived from PH reaction norms. A: Manhattan plot from GWAS result of intercept. B: Manhattan plots from GWAS result of slope. C: Scatter plot of $-\log_{10}(P)$ values from the intercept and slope GWAS results. D: Genetic effect continua of phenotypic plasticity loci for flowering time.

Results

> Performance prediction with weather and genomic profiling.

Figure 4. Cross validation and empirical validation of FT. A: Untested genotypes in untested environments scenario (joint leave-oneenvironment-out and leave-one-half-of-genotypes-out cross validation). B: Empirical validation experiments of four new environments.

- Sorghum Association Panel (n = 306) Represents global sorghum genetic diversity
- Photoperiod-insensitive accessions • With 265k SNP
- Fourteen natural environments • Flowering time (FT) and plant height
 - (PH) were recorded
 - Weather profiling (temperature and photoperiod) during growing season was retrieved

Figure 2. Growing degree days from 32 to 59 days after planting (GDD₃₂₋₅₉) and diurnal temperature range from 25 to 31 days after planting (DTR₂₅₋₃₁) were identified as the environmental index for FT and PH, respectively. Reaction-norm parameters (intercept and slope) were obtained for each genotype by regressing the observed phenotypic values on the environmental index.